Two-stream FCNs to balance content and style for style transfer
نویسندگان
چکیده
منابع مشابه
Separating Style and Content for Generalized Style Transfer
Neural style transfer has drawn broad attention in recent years. However, most existing methods aim to explicitly model the transformation between different styles, and the learned model is thus not generalizable to new styles. We here attempt to separate the representations for styles and contents, and propose a generalized style transfer network consisting of style encoder, content encoder, m...
متن کاملContent Aware Neural Style Transfer
In the emerging inter-disciplinary field of art and image processing, algorithms have been developed to assist the analysis of art work. In most applications, especially brush stroke analysis, high resolution digital images of paintings are required to capture subtle patterns and details in the high frequency range of the spectrum. Algorithms have been developed to learn styles of painters from...
متن کاملMulti-Content GAN for Few-Shot Font Style Transfer
In this work, we focus on the challenge of taking partial observations of highly-stylized text and generalizing the observations to generate unobserved glyphs in the ornamented typeface. To generate a set of multi-content images following a consistent style from very few examples, we propose an endto-end stacked conditional GAN model considering content along channels and style along network la...
متن کاملSeparating Style and Content
In many vision problems, we want to infer two (or more) hidden factors which interact to produce our observations. We may want to disentangle illuminant and object colors in color constancy; rendering conditions from surface shape in shape-from-shading; face identity and head pose in face recognition; or font and letter class in character recognition. We refer to these two factors generically a...
متن کاملArtistic Style Transfer for Videos
In the past, manually re-drawing an image in a certain artistic style required a professional artist and a long time. Doing this for a video sequence single-handed was beyond imagination. Nowadays computers provide new possibilities. We present an approach that transfers the style from one image (for example, a painting) to a whole video sequence. We make use of recent advances in style transfe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Machine Vision and Applications
سال: 2020
ISSN: 0932-8092,1432-1769
DOI: 10.1007/s00138-020-01086-1